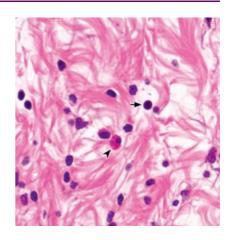


Введение в гистологию	1
Гистогенез	
Ткань	4
Регенерация	
Эпителиальные ткани	10
Покровный эпителий	10
Железистый эпителий	13
Собственные соединительные ткани	18
Ткани внутренней среды	18
Хрящевые ткани	25
Костные ткани	31
Мышечные ткани	40
Скелетная мышечная ткань	41
Сердечная мышечная ткань	45
Гладкая мышечная ткань	46
Нервные ткани	51
Строение нервных тканей	51
Нейроны	53
Глия	56
Нервные окончания	60
Синапсы	65
Нервные окончания	67
Кровь	73
Система крови	
Эритроциты	
Тромбоциты	83
Лейкоциты	85

- **Коммитирование** стойкая депрессия (подавление) одних генов и репрессия (активация) других. Этот процесс постепенно ограничивает пути возможного направления развития клеток
- Детерминация появление у клетки генетической запрограммированности только на один путь развития
- **Дифферон** гистогенетический ряд клеток одного типа, находящихся на разных этапах дифференцировки

Основные периоды дифференцировки клеток зародыша

- 1. Оотипическая дифференцировка образование презумптивных (подразумеваемых) зачатков, разделение зиготы на краниальный и каудальный отделы
- 2. Бластомерная дифференцировка дробление и образование различных друг от друга бластомеров
- 3. Зачатковая дифференцировка образование зачатковых листов тканей, протекает в гаструле
- 4. Тканевая дифференцировка образование дифферонов


Клеточная популяция — совокупность клеток с общими признаками

Пример: в рыхлой соединительной ткани имеются тканевые базофилы, макрофаги и фибробласты

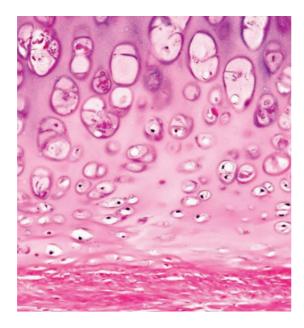
Камбиальные клетки — клетки, способные к пролиферативной активности и служащие источником обновления ткани. Главное свойство стволовых клеток — самовоспроизводиться

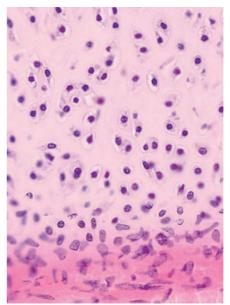
1. Рыхлая волокнистая или неоформленная соединительная ткань

- В межклеточном пространстве аморфное вещество преобладает
- Волокна лежат рыхло и произвольно
- Образует: строму или интерстиций, подэпителиальный слой кожи
- Расположение: в стенках сосудов и вокруг них

2. Плотная волокнистая неоформленная соединительная ткань

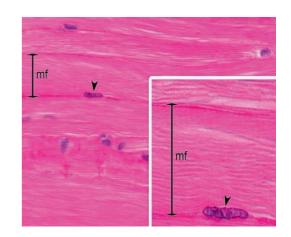
- В межклеточном пространстве преобладают толстые пучки коллагеновых волокон
- Мало аморфного вещества
- Волокна лежат произвольно
- Образует: глубокий сетчатый слой кожи
- Клеточный состав: фибриноциты и фибробласты




3. Плотная оформленная волокнистая соединительная ткань

- Tun: коллагеновый и эластический
- В межклеточном пространстве преобладают волокна соответствующего типа
- Волокна упорядочены, идут параллельно
- Важно: эластическая ткань содержит волокна двух типов, коллагеновая только своего
- Клеточный состав: фиброциты и фибробласты
- Мало аморфного вещества
- Выделяют пучки первого, второго, третьего порядка

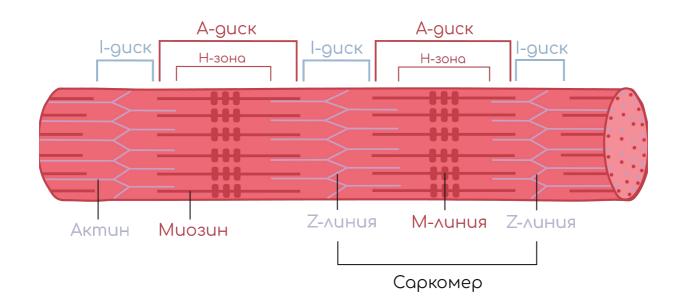
- Межтерриториальный матрикс
 - Располагается дальше от лакун
 - Много протеогликановых агрегатов
 - Базофилен
 - Протеогликаны придают упругость хрящу
 - Состав вещества: длинная нить гиалуроновой кислоты, связывающий белок, пептидные цепи, олигосахаридные ветви


Эластическая хрящевая ткань

- 1. Образует
 - Ушные раковины
 - Хрящи носа
 - Хрящи средних бронхов и гортани
- 2. Покрыта надхрящницей
- 3. Клеточный состав идентичен гиалиновой хрящевой ткани
- 4. Особенности
 - Имеются изогенные группы хондроцитов
 - Хондроциты попарно сформированы и образованы в цепочки перпендикулярно поверхности
 - Хондроциты крупные и овальные
 - В межклеточном веществе много протеогликанов и коллагеновых фибрилл
 - Много эластических волокон
 - Окраска орсеином в темно-вишневый

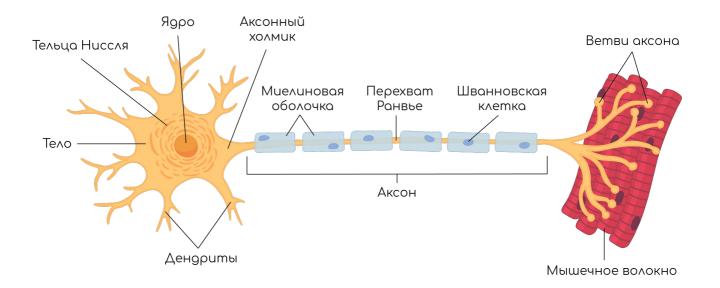
- Регенерация:
 - Рост навстречу друг другу
 - Образование новых мышечных волокон

Состав мышечного волокна


- **Muocumnласт**: длинная цилиндрическая структура с множеством ядер
- **Muocameллитоциты**: лежат в центре миосимпласта мелкие одноядерные клетки функционально в роли камбия
- Саркоплазма цитоплазма
- Размер волокна 70мкм
- Мышечные волокна высокой оксифильности из-за высокого содержания белка

• Ядра миосателлита узкой палочковидной формы, расположенные на периферии миосимпласта, не содержат центриолей (ядра не делятся)

Гистофизиология скелетной мышечной ткани


- **I-диски:** светлые полосы изотропные. Разделены по середине Z-линией телофрагма на два полудиска
- Саркомер: участок миофибриллы между двумя соседними телофрагментами (Z-линиями), которые посередине разделены Адиском
- **A-gucku**: темные полоски анизотропные. Посередине более светлая Н-зона, а в её центре М-линия мезофрагма

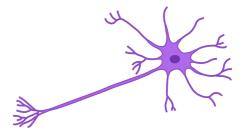
VERNO

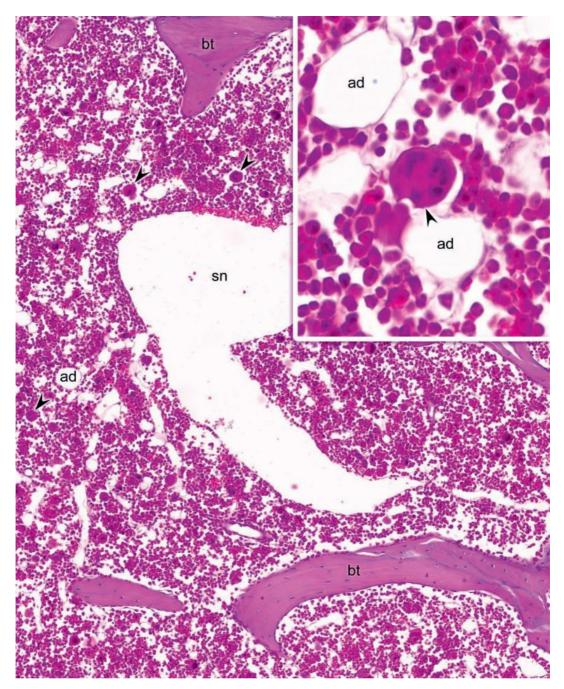
Краткий итог

Характеристика	Скелетная МТ	Сердечная МТ	Гладкая МТ
Источник развития	Миотомы сомитов	Миоэпикардиальная пластинка	Спланхотом и мезенхима
Локализация	Мышцы локомоторного аппарата, диафрагмы, рта, языка, глотки, гортани, пищевода, глазодвигательные, мимические мышцы	Миокард	Стенка полых внутренних органов, стенка сосудов, мышцы, поднимающие волос, капсула и трабекулы селезенки, мышцы яичка, радужная оболочка глаза, стенка пищеварительного тракта
Иннервация	Спинномозговые нервы (ЦНС), соматическая НС	ВНС, автономная генерация импульсов без участия ЦНС	ВНС
Функция	Произвольные движения: дыхание, глотание, мимика, речь	Непроизвольное сокращение, обеспечение насосовой функции сердца	Непроизвольная регуляция сосудистого тонуса, тонуса стенок внутренних органов
Сокращение	Быстрое, сильное, произвольное	Быстрое, непроизвольное	Медленное, непроизвольное
Утомляемость	Быстрая	Медленная	Медленная
Миофибриллы	Исчерченные	Исчерченные	Без исчерченности
Длина клеток	До 10 см	До 4 см	До 0,5 см
Количество ядер	Многоядерная	Многоядерная	Одноядерная

Классификация нейронов по количеству отростков

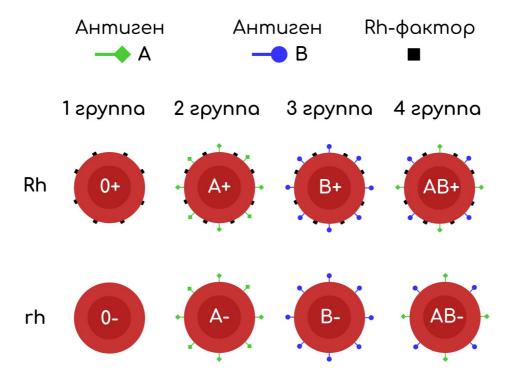
- Униполярные только аксон. Представлены нейробластами на ранних стадиях дифференцировки
- Псевдоуниполярные 2 отростка, очень близко расположены друг к другу (пример: чувствительные нейроны)
- Биполярные нейроны 2 отростка с противоположным отхождением (пример: местные ассоциативные нейроны сетчатки)
- **Мультиполярные нейроны** много отростков, самый длинный аксон


Униполярный нейрон


Псевдоуниполярный нейрон

Биполярный нейрон

Мультиполярный нейрон



Кроветворение в красном костном мозге

bt – трабекулы губчатой кости sn – синусоиды ad – адипоциты стрелки – мегакариоциты

Клиническая значимость

• Особенность эритроцитов — наличие системы антигенантитело. Именно благодаря этой особенности различают 4 группы крови

Белки плазмолеммы эритроцита

- Спектрин палочкообразная форма, в соединении друг с другом образуют сетку плазмолеммы
 - Нужны для эластичности и упругости мембраны
 - Сцепку образует белок анкрин
- Гликофорин интегральный белок
 - С внешней стороны мембраны связан с олигосахаридными остатками и остатками сиаловой кислоты (ОСК)
 - ОСК содержат ионизированные карбоксильные группы, которые сообщают эритроцитам отрицательный заряд
- Функция других мембранных белков образование ионных каналов

Белки цитоплазмы

- Гемоглобин белок газообмена: переносит молекулы O2 и CO2
 - Строение гемоглобина: 4 белковые субъединицы тетрамерный белок
 - Виды: фетальный, эмбриональный, гемоглобин А, гемоглобин взрослых
- **Карбоангидраза** фермент, который катализирует реакции превращения CO₂ в гидрокарбонат иона HCO₃